High School Science Virtual Learning

College Chemistry

 Hess's Law April 17, 2020High School College Chemistry Lesson: April 17, 2020

Objective/Learning Target:

Students will be able to use Hess's Law to
calculate the enthalpy of a reaction using standard enthalpies and bond energies.

Let's Get Started:

1. What is the equation for work?
2. At a constant pressure what is enthalpy $(\Delta \mathrm{H})$ equal to?

Let's Get Started: Answer Key

1. What is the equation for work? $\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}$

$$
\mathrm{W}=\mathrm{Work}, \mathrm{P}=\text { Pressure, } \Delta \mathrm{V}=\text { Change in volume }
$$

2. At a constant pressure what is enthalpy $(\Delta \mathrm{H})$ equal to? Heat, q

Lesson Activity:

Directions:

1. Watch this video.
2. What is the enthalpy of the first reaction below, given the enthalpies of the other reactions?
$\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}$
$2 \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})}$
$\Delta \mathrm{H}=$?
$\Delta \mathrm{H}=-222 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{CO}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}=+566 \mathrm{~kJ} / \mathrm{mol}$

Answer

$\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}$
$\mathrm{C}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}$
$\mathrm{CO}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-283 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}=-394 \mathrm{~kJ}$

Lesson Activity:

Directions:

1. Watch this video and video 2.
2. What is the standard enthalpy of the following reaction? Use this table of standard enthalpies for reference.

$$
2 \mathrm{CH}_{4(\mathrm{~g})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CHCl}_{3(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}
$$

Answer:

$\Delta H_{\text {rxn }}=\Sigma n_{\text {products }} \Delta H_{\text {products }}-\Sigma n_{\text {reactants }} \Delta H_{\text {reactants }}$
[2(-103.14kJ) + 3(0kJ)] - [2(-74.6kJ) + 3(0kJ)]
[-206.28 kJ + 0kJ] - [-149.2 kJ + OkJ]
[-206.28 kJ] - [-149.2 kJ]
$=-57.08 \mathrm{~kJ}$

Lesson Activity:

Directions:

1. Watch this video.

Practice

Complete the following questions using the information you learned during the lesson activity.

Questions:

1. What is the change in enthalpy of the following reaction based on standard enthalpies found here.
$2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+6 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{AlCl}_{3(\mathrm{~s})}+3 \mathrm{O}_{2(\mathrm{~g})}$
2. What is the change in enthalpy of the next reaction based off the other reactions given?

$$
\begin{array}{ll}
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \Delta \mathrm{H}=? \\
2 \mathrm{CH}_{4(\mathrm{~g})}+4 \mathrm{O}_{2 \mathrm{~g})} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})} & \Delta \mathrm{H}==1,214 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} & \Delta \mathrm{H}=+283 \\
\mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Questions:

3. Use the bond energy table found partway down this page to calculate the change in enthalpy for the reaction below.
$\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Once you have completed the practice questions check with the answer key.

1. $535.2 \mathrm{~kJ} / \mathrm{mol}$
2. $-890 \mathrm{~kJ} / \mathrm{mol}$
3. $-682 \mathrm{~kJ} / \mathrm{mol}$

More Practice:

Follow the links below to do more practice.

1. This worksheet covers Hess's Law.
2. This worksheet includes practice with the standard enthalpy of formation.

Additional Practice:
Click on the link below for additional practice.
Practice with Answers

